Branching ratio of electron capture in the decay of ¹⁰⁰Tc

I. Ahmad,¹ A. Algora,² J. Äystö,³ T. Eronen,³ A. Garcia,⁴ S. A. Hoedl,⁴ A. Jokinen,³ D. Melconian,

I. D. Moore,³ H. Penttilä,³ S. K. L. Sjue,⁴ H. E. Swanson,⁴ and S. Triambak⁴
¹Argonne National Laboratory, Argonne, Illinois
²Instituto de Fisica Corpuscular, University of Valencia, Valencia, Spain
³University of Jyväskylä, Jyväskylä, Finland
⁴CENPA, University of Washington, Seattle, Washington

We have completed analysis of the experiment to measure the electron capture branch for ¹⁰⁰Tc. The spectrum of x-rays observed in anti-coincidence with a scintillator (which has near 4π coverage to veto the dominant β^{-} branch) is shown in Fig. 1. The branching ratio for electron capture was found to be $B(\text{EC}) = (2.6\pm0.4) \times 10^{-5}$, and this was published in Physical Review C [1]. This branching ratio can be used as a benchmark calculation for models of two-neutrino and neutrinoless double- β decay.

FIG. 1. X-ray spectrum from ¹⁰⁰Tc. The Mo x-rays are produced in EC decays while the dominant Ru x-rays are produced following β decays.

In the fall of 2009, we are going to perform a similar experiment to measure the EC branch of ¹¹⁶In, again at the JYFL facility in Jyväskylä. The structure of nuclei in the region of A=116 are known to have small deformations which affect theory calculations; the EC branch of ¹¹⁶In, like ¹¹⁰Tc, can also serve as a benchmark calculation for interpreting the results of double- β decay experiments.

[1] S. K. L. Sjue et al., Phys. Rev. C 78, 064317 (2008).